
2021 International STEM Education Conference (iSTEM-Ed 2021)  
November 10-12, 2021, Pattaya, THAILAND 

MiniScript: A New Language for Computer 
Programming Education 

Joseph Strout 
Luminary Apps, LLC 

joe@LuminaryApps.com 

Abstract—Computer programming is fundamental 
to modern STEM (science, technology, engineering, & 
math) education and industry.  Visual programming 
environments such as Scratch provide a gentle 
introduction to the topic for young children, but the 
transition to text-based languages such as Python or C# 
can be a difficult leap.  A new scripting language, 
MiniScript, has been designed to fill this gap.  It uses 
minimal syntax and a carefully selected small set of 
language features to present a less intimidating 
challenge for the learner.  At the same time, the 
language is complete enough to be used for sophisticated 
games and other programs.  Finally, MiniScript itself is 
lightweight and designed to be embedded into other 
software written in either C# or C/C++, making it more 
likely that children will encounter the language in the 
context of games, thus providing self-motivated learning 
opportunities.    

Keywords—programming, scripting, education, 
embedded languages 

I.  INTRODUCTION 
Computer programming, or more generally 

computational thinking, is a foundational skill in 
science, technology, engineering, and math (STEM) 
fields.  For young children, studies have shown that 
visual languages such as Scratch provide an effective 
introduction to programming skill.  However, when 
the learner is ready to move beyond visual languages 
and start working with text-based programming 
languages, it may be a difficult leap. 

The ideal first text-based language would have the 
following characteristics: 

1) Simplicity: a language designed with minimal 
syntax, a minimal but complete set of flow-
control constructs, and a small set of intrinsic 
functions (all features of visual languages like 
Scratch). 

2) Expressiveness: the language should support 
all common software paradigms seen in 
production languages, including recursion, 
object-oriented programming, first-class 
functions, and proper handling of Unicode text. 

3) Ubiquity: the language should appear in 
many contexts that may be intrinsically 
motivating to the user, for example, as an in-
game or modding language in video games. 

The first and third points are somewhat related; an 
easily embeddable language is likely to be small, and 
a small language is more likely (though not certain) to 
be simple.  The second point is somewhat in 
opposition to the first two; simple, easily embedded 
languages tend to be less expressive than large, 
complex ones. 

This paper introduces a new programming 
language designed to meet all three criteria.  The 
language, MiniScript, is a small language designed for 
learning and teaching, with implementations 
optimized for embedding in C# or C++ games. 

II.  RELATED WORK 
MiniScript has been influenced by many 

predecessor languages, but two languages present 
particularly important comparisons: Python, for its 
elegant syntax and handling of both lists and maps; 
and Lua, for its small size and ease of embedding. 

Python, first released in 1991, has become popular 
as both a production language and a teaching language 
[1].  Studies such as [2] have shown that novice 
students learn better with a simple language such as 
Python, than with a more complex one like Java.  Like 
MiniScript, Python is a dynamically-typed language 
with a well-developed read/eval/print loop (REPL), 
and it features sophisticated handling of both lists 
(ordered sequences of values) and maps (sets of key/
value pairs).  However, at over 661 thousand lines in 
718 source files, building Python can be challenging 
[3]; and it is not designed for embedding in other 
software (though doing so is not impossible).  Python 
has gone through three major revisions, with a 
difficult transition from version 2 to 3 resulting in 
many users failing to upgrade or replace deprecated 
APIs [4]. 

Lua was first released in 1993, and has become a 
popular language for embedding in other software, 
especially games [5].  More than an order of 
magnitude smaller than Python, Lua was designed 
from the beginning as an extension language, though 
recent versions include a REPL as well [6].  Lua uses 
one data type, table, to represent both sequences and 
maps, leading to some common errors [7]; and it lacks 
the slice semantics commonly used in Python.  Also 
notable in Lua is that all variables are global by 
default (a special local keyword is used to declare a 
local variable). 

978-0-7381-1380-7/21/$31.00 ©2021 IEEE



2021 International STEM Education Conference (iSTEM-Ed 2021) 
November 10-12, 2021, Pattaya, THAILAND 

MiniScript shares many features with these earlier 
languages, but has some important differences too.  In 
handling of lists and maps, it is most similar to 
Python; but instead of indentation-based code blocks 
it uses block keywords, similar to Lua.  While both 
Python and Lua predate widespread adoption of 
Unicode, MiniScript was created with Unicode 
support throughout.  In terms of size, MiniScript is 
even smaller than Lua (see Table 1).  Finally, while 
Python and Lua are both written in C, MiniScript 
comes with two functionally equivalent reference 
implementations: one in lightweight C++ (eschewing 
the Standard Template Library) and one in C#.  This 
enables MiniScript to be easily embedded even in 
applications written in C#, such as games using the 
popular Unity engine. 

III.  LANGUAGE FEATURES 
In this section, an overview of the language is 

provided.  The purpose of this is to give the reader a 
quick sense of the style and capabilities of MiniScript.  
For a more complete description, please refer to the 
MiniScript manual. 

MiniScript is a procedural, object-oriented, 
prototype-based language.  Compared to most other 
programming languages, MiniScript uses relatively 
little punctuation, particularly in basic control flow 
statements; it needs no parentheses around the 
condition in if  or while  statements, for example, 
and code blocks are delimited by keywords rather than 
curly braces or parentheses.  (See Listing 1.) 

Mathematical operators are the same ones 
common to most modern languages: +, -, *, and /, 
plus % for mod and ^ for exponentiation.  The logical 
operators are keywords and, or, and not; 
comparison operators are as in C or Python (==, !=, 
>=, etc.).  Operator precedence is in standard algebra, 
with parentheses used only as needed for grouping 
subexpressions. 

Like Python 2, MiniScript does not need 
parentheses around the argument to the print 
statement.  That feature was lost in Python 3, in order 
to make print more consistent with other functions.  
In MiniScript, omitting the parentheses is already 
consistent; they can (and should) be omitted any time 
a function call is the statement itself, rather than part 
of some larger expression.  They are also omitted any 
time the argument list is empty.   For example, 
consider: 

  print ceil(rnd * 10)

In this complete MiniScript statement, print, 
ceil, and rnd  are all functions, but only ceil 
requires parentheses (because it takes arguments but is 
not the statement root).  The result of this policy is 
clean, syntax-light code characterized by very little 
punctuation.  It also makes the difference between 
computed and stored properties an implementation 
detail, rather than something that concerns the users of 
a class or module. 

MiniScript uses three control flow constructs: if/
else, while, and for.  It also supports continue 
and break  for skipping to the next iteration or 
jumping out of a loop. 

MiniScript has exactly six data types: 

1) Numbers are stored in full-precision format, 
and are also used to store true  (1) and false 
(0). 

2) Strings are immutable runs of Unicode 
characters, and support both iteration and slicing. 

3) Lists reference mutable, ordered sequences of 
arbitrary values.  Like strings, lists support 
iteration and slicing, but (unlike strings) lists can 
be modified in place. 

4) Maps reference mutable collections of key/
value pairs.  Keys within a map are unique; both 
keys and values may be any type.  Maps also 
form the basis of the class/object system, and 
support single inheritance. 

5) Functions reference compiled subprograms.  
Functions in MiniScript are first-class objects and 
may be stored in variables, passed as parameters, 
etc. 

6) Null is a special data type with only one value 
(the constant null). 

Examples of all six types are shown in Table 2. 

The MiniScript core contains 53 intrinsic methods, 
many of which are overloaded to work on multiple 

// print a countdown
for i in range(3,1)

print "Ready in " + i
wait

end for

// pick a random number
num = round(100 * rnd)
// loop until input is correct
while true

x = input("Your guess?").val
if x == num then

print "Correct!"
break // exit loop

else if x > num then
print "Too high."

else
print "Too low."

end if
end while

 Listing 1.  A sample MiniScript program.

Python Lua MiniScript
Source Lines 661,775 29,469 13,752
Source Files 718 62 46
Data Types 34 8 6
Intrinsics 69 242 53
Table 1. Comparison of Python, Lua, and MiniScript on four 
measures of size: C/C++ source code lines; source code files; 
number of data types; and number of standard intrinsic 
functions.

TABLE 1.      COMPARISONS WITH PYTHON AND LUA.



2021 International STEM Education Conference (iSTEM-Ed 2021) 
November 10-12, 2021, Pattaya, THAILAND 

types.  For example, the len intrinsic will return the 
number of Unicode characters in a string, the number 
of elements in a list, or the number of key/value pairs 
in a map.  The intrinsics support use of the core data 
types as many of the common data structures in 
computer science: e.g., to use a list as a stack or a 
queue, or to use a map as a set. 

Indexing and slice syntax are very similar to 
Python: an element of a list or string is obtained by 
placing the index within square brackets after the list 
or string reference, and a sublist or substring results 
from specifying a range via a colon.  For example, if s 
is a string, then s[3]  returns character 3 (counting 
the first character as 0), and s[3:5]  returns the 
substring from character 3 up to but not including 
character 5.  Either index may be negative, in which 
case it counts backwards from the end of the string; or 
omitted, in which case the range implicitly starts or 
ends at the beginning or end of the string, respectively.  
Thus, s[-3:] returns the last three characters of a string.  
Lists work in exactly the same way, with the 
additional feature that elements (but currently not 
ranges) may be assigned new values, mutating the list. 

Map syntax is inspired by Python as well; a map 
literal uses key:value pairs separated by commas, and 
enclosed in curly braces.  Once a map is created, keys 
may be specified in square brackets in a manner very 

similar to indexing into a list or string.  However, 
MiniScript maps support an additional feature: any 
string key that is a valid identifier may also be 
accessed via dot syntax, i.e. a map reference, followed 
by a dot operator (period), and then the key.  This is 
mostly equivalent to the normal square-bracket 
syntax, unless the value of associated with the key is a 
function reference (more on this later).  This dot 
notation is often a convenient alternative to square-
bracket indexing, and helps prepare the learner for 
similar syntax in other languages; it also has 
additional semantics when referencing a function or in 
the presence of inheritance, as described below. 

Functions are unnamed, first-class objects that can 
take any number of parameters (with default values), 
and return a single result value (which may be null).  
Variables within a function are always local by 
default, but function code may read variables in the 
calling scope or in the global scope as well.  Assigning 
to values in these higher scopes can be done via the 
outer  and global  keywords.  This default-local 
scoping is common in modern languages (though 
differs from Lua), and helps avoid a proliferation of 
global variables. 

Functions are invoked by evaluating any variable 
that refers to them.  This works both for simple 
variables, like f, as well as map properties referenced 
via dot syntax, such as m.f.  When a function is 
invoked via dot syntax, it gets an implicit argument 
self that refers to the map on which it was invoked.  
Note that unlike Python, this self  parameter is not 
part of the function parameter list; it is inserted 
implicitly by the invocation.  Listing 2 illustrates the 
use of maps and functions. 

Several additional features support object-oriented 
programming (OOP) via prototype-based inheritance.  
A map can be made to derive from a base map by 
creating it with the new operator, which sets a special 
“__isa” key.  When the dot operator is evaluating the 
key (i.e. the right-hand side identifier), it will walk 
this __isa chain until a match is found.  This allows 
derived maps to be used as subclasses or instances, 
overriding only the functions or other values needed, 

Data Type Sample Usage
Number e = 2.718
String s = "Hello World"

List seq = [1, 2, "three"]
s[0] = "first"

Map
m = {five":5}
m["six"] = 6
m.seven = 7

Function
dist = function(x,y)
    return sqrt(x^2 + y^2)
end function

Null x = null

Shape = {"sides": 0, "color": "blue"}
Shape.degrees = function()
    return 180 * (self.sides - 2)
end function
Shape.name = function()
    return self.sides + "-sided shape"
end function
Shape.describe = function(caps=false)
    s = "a "+self.color+" "+self.name
    if caps then s = s.upper
    print s
end function
Shape.sides = 3
print Shape.degrees
Shape.describe true

OUTPUT:
180
A BLUE 3-SIDED SHAPE

 Listing 2. Illustration of map, function, and dot syntax.

Square = new Shape
Square.sides = 4
Square.name = "square"
Square.describe = 
function(capitalize=false)
    super.describe capitalize
    print " (my favorite shape)"
end function

mySquare = new Square
mySquare.color = "yellow"

print mySquare.degrees
mySquare.describe

OUTPUT:
360
a yellow square
 (my favorite shape)

 Listing 3. Subclassing and instantiation.  (Append to Listing 2.)

TABLE 2.      MINISCRIPT DATA TYPES (WITH EXAMPLES).



2021 International STEM Education Conference (iSTEM-Ed 2021) 
November 10-12, 2021, Pattaya, THAILAND 

and inheriting the rest from the base map.  Finally, 
within a function, a special super  keyword allows 
reference to the base map of the map on which the 
function was found; this supports the common pattern 
of invoking a base-class method from within derived-
class code.  Listing 3, which should be read as an 
extension of Listing 2, illustrates some of these OOP 
features. 

This overview concludes with two more realistic 
examples, taken from the Rosetta Code website [8].  
Listing 4 finds the longest common prefix of a list of 
strings; and Listing 5 shows both iterative and 
recursive methods to find a Fibonacci number. 

IV.  CONCLUSION 
MiniScript is poised to become a useful new 

alternative for a language used to teach programming.  

Its minimal syntax, combined with modern features 
such as inheritance, first-class functions, default-local 
variables, and Unicode support, make it an appealing 
choice for both teaching and learning. 

The primary drawback to MiniScript is that, as a 
very new language, it is not yet widely known or used.  
However, wi th l igh t -weight , open-source 
implementations in both C++ and C# — the languages 
used by the highly popular Unreal and Unity game 
engines — there is reason to believe this may change 
in the future. 

ACKNOWLEDGMENT 
The author wishes to thank Georg Becker for 

helpful coments on the manuscript. 

REFERENCES 
1. C. S. Miller, A. Settle, and J. Lalor, “Learning object-oriented 

programming in Python: Towards an inventory of difficulties 
and testing pitfalls,” Proceedings of the 16th Annual 
Conference on Information Technology Education, pp. 59-64, 
2015. 

2. L. Mannila, M. Peltomäki, and T. Salakoski, “What about a 
simple language? Analyzing the difficulties in learning to 
program,” Computer Science Education, vol.16, no. 3, pp. 
211-227, 2006. 

3. V. Boykis, “It's still hard for beginners to get started with 
Python,” http://veekaybee.github.io/2018/03/12/installing-
python-is-hard , 2018. 

4. J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how 
deprecated Python library APIs are (not) handled,” 
Proceedings of the 28th ACM Joint Meeting on European 
Software Engineering Conference and Symposium on the 
Foundations of Software Engineering, pp. 233-244, 2020. 

5. R. Ierusalimschy, L. H. De Figueiredo, and W. C. Filho, “Lua
—an extensible extension language,” Software: Practice and 
Experience, vol. 26, no. 6, pp. 635-652, 1996. 

6. R. Ierusalimschy, L. H. De Figueiredo, and C. Waldemar, Lua 
5.1 reference manual, 2006. 

7. “Avoiding gaps in tables used as arrays,” https://
riptutorial.com/lua/example/8360, retrieved May 2020. 

8. “Category: MiniScript”, http://www.rosettacode.org/wiki/
Category:MiniScript, retrieved May 2020. 

commonPrefix = function(strList)
    if not strList then return null
    // find the shortest and longest strings (without sorting)
    shortest = strList[0]
    longest = strList[0]
    for s in strList
        if s.len < shortest.len then shortest = s
        if s.len > longest.len then longest = s
    end for
    if shortest.len < 1 then return ""
    // now find how much of the shortest matches the longest
    for i in range(0, shortest.len-1)
        if shortest[i] != longest[i] then return shortest[:i]
    end for
    return shortest
end function

items = ["interspecies", "interstellar", "interstate"]
print commonPrefix(items)

// Fibonacci number (recursive)
rfib = function(n)
    if n < 1 then return 0
    if n == 1 then return 1
    return rfib(n-1) + rfib(n-2)
end function
 
// Fibonacci number (iterative)
ifib = function(n)
    if n < 2 then return n
    n1 = 0
    n2 = 1
    for i in range(n-1, 1)
        ans = n1 + n2
        n1 = n2
        n2 = ans
    end for
    return ans
end function
 
print "Recursive: " + rfib(6)
print "Iterative: " + ifib(6)

 Listing 5. Fibonacci number, with recursion and iteration.

 Listing 4. Function to find the longest common prefix of a list of strings.


