
Welcome to MiniScript!
MiniScript is a high-level object-oriented
language that is easy to read and write.

Clean Syntax
Put one statement per line, with no
semicolons, except to join multiple
statements on one line.
Code blocks are delimited by keywords
(see below). Indentation doesn't matter
(except for readability).
Comments begin with //.
Don't use empty parentheses on
function calls, or around conditions in if
or while blocks.
All variables are local by default.
MiniScript is case-sensitive.

Control Flow
if, else if, else, end if
Use if blocks to do different things
depending on some condition. Include
zero or more else if blocks and one
optional else block.
if 2+2 == 4 then
 print "math works!"
else if pi > 3 then
 print "pi is tasty"
else if "a" < "b" then
 print "I can sort"
else
 print "last chance"
end if

while, end while
Use a while block to loop as long as a
condition is true.
s = "Spam"
while s.len < 50
 s = s + ", spam"
end while
print s + " and spam!"

for, end for
A for loop can loop over any list,
including ones easily created with the
range function.
for i in range(10, 1)
 print i + "..."
end for
print "Liftoff!"

break & continue
The break statement jumps out of a
while or for loop. The continue
statement jumps to the top of the loop,
skipping the rest of the current iteration. 

Data Types
Numbers
All numbers are stored in full-precision
format. Numbers also represent true (1)
and false (0). Operators:
+, -, *, / standard math
% mod (remainder)
^ power
and, or, not logical operators
==, !=, >, >=, <, <= comparison

Strings
Text is stored in strings of Unicode
cha rac te rs . Wr i t e s t r i ngs by
surrounding them with quotes. If you
need to include a quotation mark in the
string, type it twice.
print "OK, ""Bob""."

Operators:
+ string concatenation
- string subtraction (chop)
*, / replication, division
==, !=, >, >=, <, <= comparison
[i] get character i
[i:j] get slice from i up to j

Lists
Write a list in square brackets. Iterate
over the list with for, or pull out
individual items with a 0-based index in
square brackets. A negative index
counts from the end. Get a slice
(subset) of a list with two indices,
separated by a colon.
x = [2, 4, 6, 8]
x[0] // 2
x[-1] // 8
x[1:3] // [4, 6]
x[2]=5 // x now [2,4,5,8]

Operators:
+ list concatenation
*, / replication, division
[i] get/set element i
[i:j] get slice from i up to j

Maps
A map is a set of values associated with
unique keys. Create a map with curly
braces; get or set a single value with
square brackets. Keys and values may
be any type.
m = {1:"one", 2:"two"}
m[1] // "one"
m[2] = "dos"

Operators:
+ map concatenation
[k] get/set value with key k
.ident get/set value by identifier

Functions
Create a function with function(),
including parameters with optional
default values. Assign the result to a
variable. Invoke by using that variable.
Use @ to reference a function without
invoking.
triple = function(n=1)
 return n*3
end function
print triple // 3
print triple(5) // 15
f = @triple
print f(5) // also 15

Classes & Objects
A class or object is a map with a special
__isa entry that points to the parent.
This is set automatically when you use
the new operator.
Shape = {"sides":0}
Square = new Shape
Square.sides = 4
x = new Square
x.sides // 4

Functions invoked via dot syntax get a
self variable that refers to the object
they were invoked on.
Shape.degrees = function()
 return 180*(self.sides-2)
end function
x.degrees // 360

Intrinsic Functions
Numeric
abs(x) acos(x) asin(x)
atan(y,x) ceil(x) char(i)
cos(r) floor(x) log(x,b)
round(x,d) rnd rnd(seed)
pi sign(x) sin(r)
sqrt(x) str(x) tan(r)

String
.indexOf(s) .insert(i,s)
.len .val .code
.remove(s) .lower .upper
.replace(a,b) .split(d)

List/Map
.hasIndex(i) .indexOf(x)
.insert(i,v) .join(s)
.push(x) .pop .pull
.indexes .values
.len .sum .sort
.shuffle .remove(i)
range(from,to,step)

Other
print(s) time wait(sec)
locals outer globals
yield

MiniScript QuickRef version 1.5

