
MiniScript Manual

MiniScript
Manual
Learn to read, write, and speak
the world's easiest computer language

Joe Strout

MiniScript Maker

Version 1.6.2

Monday, July 22, 2024

 - -1

MiniScript Manual

Welcome to MiniScript 4 ..
Clean, Clear Syntax 4 ...
Comments 6 ...
Use of Parentheses 6 ..
Local and Global Variables 7 ...
Math-Assignment Operators 8 ..
MiniScript is Case-Sensitive 8 ...

Control Flow 9 ..
Branching with if 9 ..
Looping with for 10 ..
Looping with while 11 ..
Break and Continue 11 ...
The Nature of Truth 12 ..

Data Types 13 ..
Numbers 13 ..
Strings 14 ...
Lists 15 ...
Maps 17 ..
Type Checking 18 ...
Extending Built-In Types 18 ..
Complete Operator List 19 ..

Functions and Classes 20
Functions 20 ..
Nested Functions 21 ..
Classes and Objects 23 ..
Extending the Built-In Types 25 ...

Intrinsic Functions 26 ..
Numeric Functions 26 ...
String Functions 27 ...
List Functions 28 ...
Map Functions 29 ..
System Functions 30 ...

Examples 31 ..
FizzBuzz 31 ...
Filter 32 ..
Greatest Common Divisor 32 ..

 - -2

MiniScript Manual

Maximum Element 33 ...
Titlecase 33 ..
Titlecase (version 2) 34...

 - -3

MiniScript Manual

Welcome to MiniScript
a high-level, object-oriented language
that is easy to read and write
MiniScript is a modern scripting language designed to be clean, simple, and easy to learn. It
was designed from the ground up by borrowing only the best ideas from other languages
such as Python, Lua, Basic, and C#. If you know pretty much any other programming
language, you’ll pick up MiniScript almost immediately.

And if you’ve never written a line of code in your life, don’t panic! MiniScript is the
friendliest and most fun way to get started. It’s much easier than you probably expect.

Important: MiniScript is designed as an embedded programming language. That means
you will usually use it inside some other program, such as a video game. You should find
another document that describes how to access and use MiniScript within that other
program. This document only describes the MiniScript language itself, and the intrinsic
functions that are common to most MiniScript applications.

Clean, Clear Syntax
Let’s jump right in with an example, to see what MiniScript code looks like.

s = "Spam"
while s.len < 50
 s = s + ", spam"
end while
print s + " and spam!"

Each statement in MiniScript normally occurs on a single line by itself. Notice that there are
no semicolons, curly braces, or other markers at the end of a line.

However, there is one exception: if you want to join multiple statements on one line, just to
make your code more compact, you can do this by separating the statements with a
semicolon. The following code is ugly, but legal.

s = "Spam"; while s.len < 50; s = s + ", spam"; end while

print s + " and spam!"

In practice this feature is rarely used, but it's there if you need it.

 - -4

MiniScript Manual

Code Blocks
If you’re used to C-derived languages (such as C, C++, C#, etc.), then you’re used to seeing
curly braces around blocks of code. MiniScript doesn’t roll that way; code blocks always
begin with a keyword (if, for, while, or function) and end with a matching end
statement (end if, end for, end while, or end function).

Whitespace and Indentation
You can insert spaces and tabs into your code pretty much wherever you want. You can’t
break up an identifier or keyword (pr int is not the same as print), nor omit a space
between two identifiers or keywords (end if is correct, but endif would not work). And
of course spaces within quotation marks go into your string exactly as you would expect. But
between numbers, operators, etc., you can include extra spaces however you like. The
following two lines are exactly the same, as far as MiniScript is concerned.

x=4*10+2
x = 4 * 10 + 2

To make the structure of code more readable, it’s traditional to indent the lines within a code
block by either a tab or two spaces. But it’s not required. MiniScript doesn’t care how or
whether you indent your code, so do whatever works best for you.

Breaking Long Lines
Unlike C-derived languages, there are no semicolons or other funny punctuation at the end
of each line to let the computer know that the statement is over. Instead, the line break
alone is enough to signal that. But what if you need to enter a statement longer than one
line?

MiniScript will recognize that a statement is incomplete, and continues on the next line, if
the last token (before any comment — see below) is an open parenthesis, square bracket, or
brace; or a comma, or any binary operator (such as +, *, and so on). So, for example, you
could do:

speech = ["Four score and seven years ago our fathers",
 "brought forth on this continent, a new nation, conceived",
 "in Liberty, and dedicated to the proposition that all",
 "men are created equal."]

That's four lines, but only one statement as far as MiniScript is concerned. That's because
the first three lines each ends with a comma, which tells MiniScript that more is coming.

 - -5

MiniScript Manual

Comments
Comments are little notes you leave for yourself, or other humans reading your code. They
are completely ignored by MiniScript. Comments begin with two slashes, and extend to the
end of a line. So you can put a comment either on a line by itself, or after a statement.

// How many roads must a man walk down?
x = 6*7 // forty-two

Just like indentation, comments are never required… but they’re probably a good idea!

Use of Parentheses
Parentheses in MiniScript have only three uses:

1. Use them to group math operations in the order you want them, just as in algebra.

x = (2+4)*7 // this is different from 2+4*7

2. Use them around the arguments in a function call, except when the function call is the
entire statement.

print cos(0) // parens needed; cannot just say: print cos 0

3. Use them when declaring a function that takes parameters (see the Functions chapter).

Since other languages often require parentheses in lots of other places, it’s worth pointing
out where parentheses are not used in MiniScript. First, don’t put parentheses around the
condition of an if or while statement (more on these later). Second, parentheses are not
needed (and should be omitted) when calling a function without any arguments. For
example, there is a time function that gets the number of seconds since the program began.
It doesn’t need any arguments, so you can invoke it without parentheses.

x = time

Finally, as mentioned above, you don't need parentheses around the arguments of a function
that is the very first thing on a statement. The following example prints ten numbers,
waiting one second each, and then prints a message. Notice how we’re calling print and
wait without any parentheses. But the range call, because it has arguments and is used as
part of a larger statement, does need them.

for i in range(10, 1)
 print i
 wait
end for
print "Boom!"

 - -6

MiniScript Manual

Local and Global Variables
A variable is a word (also called an identifier) associated with a value. Think of variables as
little boxes that you can store data in. You create a variable simply by assigning a value to it,
as in many of the examples we’ve already seen.

x = 42

This line creates a variable called x, if it didn’t exist already, and stores 42 in it. This
replaces the previous value of x, if any.

Variables in MiniScript are dynamically typed; that is, you can assign any type of data (see
the chapter on Data Types) to any variable.

Variables are always local in scope. That means that a variable called “x” inside one
function has nothing at all to do with another variable called “x” in another function; each
variable is scoped (restricted) to the current function executing at the time of the
assignment.

However, MiniScript also supports code outside of any function, as in all the examples we’ve
seen so far. In this context, local and global variables are the same. In other words,
assigning 42 to x outside of a function creates a global variable called x. Such global
variables may be accessed from any context.

Note that when a context has a local variable of the same name as a global, an identifier will
always resolve to the local variable first. Similarly, a simple assignment statement within a
function will always create a local variable, rather than a global one. In cases where you
really need to access the global variable instead, there is a globals object that provides this
access. (See the Intrinsic Functions chapter for more detail on globals.)

demo = function
 print x // prints the global x (40)
 x = 2 // creates a local ‘x’ with a value of 2
 print x // prints the local x (2)
 print globals.x // prints the global x again (40)
 globals.x = 42 // reassigns the global x
 print x // still the local value (2)
 print globals.x // prints the new global value (42)
end function

x = 40 // creates a global ‘x’ with a value of 40
demo // invokes the function above

Overuse of global variables can sometimes lead to tricky bugs, so it’s best to use them
sparingly and rely on local variables as much as possible. MiniScript is designed so that this
good practice is what happens naturally.

 - -7

MiniScript Manual

Math-Assignment Operators
As a convenient shorthand, the math operators (+, -, *, /, %, and ^) may be used in math-
assignment form. This does a math operation with a variable, and assigns the result back to
that variable. For example, the math-assignment form:

x += 1

means exactly the same thing as:

x = x + 1

The previous rules about local and global variables still apply. So, to update a global variable
in math-assignment form, you would write something like this.

globals.x *= 5

This works not only for numbers, but for any data type where the operator used is defined.
For example, if the global x in the example above were "ha", then after executing that line,
the value of x would be "hahahahaha".

MiniScript is Case-Sensitive
Uppercase and lowercase matters in MiniScript. The print intrinsic function must be typed
exactly print, and not Print, PRINT, or any other variation. The same applies to any
variables, functions, or classes you define.

While how you use case in your own identifiers is up to you, a common convention is to
capitalize classes (e.g. Shape), but use lowercase for variables. Thus the following would be a
perfectly sensible bit of code.

shape = new Shape // create a Shape object called shape

While we're on the subject of conventions, in most cases you should avoid starting any global
variables or function names with an underscore. Identifiers starting with an underscore are
often used by the host environment for special “under the hood” code, and name collisions
there could cause problems.

 - -8

MiniScript Manual

Control Flow
looping and branching
Control flow is how you make code execute multiple times, or execute only under certain
conditions. Without it, your scripts would be limited to starting at the first line, executing
each line exactly once in order, and ending after the last line.

MiniScript includes one kind of branching (conditional) structure, and two kinds of loops.

Branching with if
Use an if…then statement to specify some condition under which the following statements
should be executed. The basic syntax is:

if condition then
 …
end if

When the condition is not true, MiniScript will jump directly to the end if statement.

if x == 42 then
 print "I have found the Ultimate Answer!"
end if

The whole set of lines, from if…then to end if, is known as an if block.

Sometimes you want to do something else when the specified condition is not true. You can
specify this with an else block before the end if.

if x == 42 then
 print "I have found the Ultimate Answer!"
else
 print "I am still searching."
end if

Finally, you can check for additional conditions by adding else-if blocks as needed. Here's a
slightly more practical example that converts a number to words.

if apples == 0 then
 print "You have no apples."
else if apples == 1 then
 print "You have one apple."
else if apples > 10 then
 print "You have a lot of apples!"
else
 print "You have " + apples + " apples."
end if

 - -9

MiniScript Manual

In this case, the first condition that matches will execute its block of lines. If none of the
conditions match, then the else block will run instead.

Note that for all these forms, the if, else if, else, and end if statements must each be
on its own line. However, there is also a "short form" if statement that allows you to write
an if or if/else on a single line, provided you have only a single statement for the then
block, and a single statement for the else block (if you have an else block at all). A short-
form if looks like this:

if x == null then x = 1

…while a short-form if/else looks like this:

if x >= 0 then print "positive" else print "negative"

Notice that end if is not used with a short-form if or if/else. Moreover, there is no
way to put more than one statement into the then or else block. If you need more than
one statement, then use the standard multi-line form.

Looping with for
A for…in statement loops over a block of code zero or more times. The syntax is:

for variable in list
 …
end for

The whole block is referred to as a for loop. On each iteration through the loop, the variable
is assigned one value from the specified list. You'll learn more about lists in the Data Types
chapter, but for now, it's enough to know that you can easily create a list of numbers using
the range function.

This example counts from 10 down to 1, and then blasts off.

for i in range(10, 1)
 print i + "..."
end for
print "Liftoff!"

See the range function in the Intrinsic Functions chapter for more options on that.

Instead of a list, you can also iterate over a text string. In this case the loop variable will be
assigned each character of the string in order.

Finally, it is also possible to iterate over maps. Again, maps will be explained in the Data
Types chapter, but just keep in mind that when you use a for statement with a map, then on
each iteration through the loop, your loop variable is a little mini-map containing key and
value. For example:

 - -10

MiniScript Manual

m = {1:"one", 2:"two", 3:"three"}
for kv in m
 print "Key " + kv.key + " has value " + kv.value
end for

This prints out each of the key-value pairs in the map.

Looping with while
The other way to loop over code in MiniScript is with a while loop. The syntax is:

while condition
 …
end while

This executes the contained code as long as condition is true. More specifically, it first
evaluates the condition, and if it's not true, it jumps directly to end while. If it is true,
then it executes the lines within the loop, and then jumps back up to the while statement.
The process repeats forever, or until the condition becomes false.

This is illustrated by the very first example in this manual, repeated here.

s = "Spam"
while s.len < 50
 s = s + ", spam"
end while
print s + " and spam!"

This code builds a string (s) by adding more spam to it, as long as the string length is less
than 50. Once it is no longer less than 50, the loop exits, and the result is printed.

Break and Continue
There are two additional keywords that let you bail out of a while or for loop early. First, the
break statement jumps directly out of the loop, to the next line past the end for or end
while. Consider the following.

while true // loops forever!
 if time > 100 then break
end while

Whenever you see while true (or while 1, which is equivalent), it is an infinite loop —
unless there is a break statement in the body of the loop. As soon as that break statement
executes, we jump directly out of the loop. It works for for loops in exactly the same way.
In the case of nested loops, break breaks out of only the innermost loop.

 - -11

MiniScript Manual

The continue statement skips the rest of the body of the loop, and proceeds with the next
iteration. This is often used for "bail-out" cases in a large loop, where under certain
conditions you want to skip an iteration and just go on with the next one.

for i in range(1,100)
 if i == 42 then continue
 print "Considering " + i + "..."
end for

This will print out the numbers 1 through 100, except for 42, which is skipped. Note that if
you simply changed continue to break in this example, the loop would print the numbers
1 through 41, and then stop.

The Nature of Truth
We have talked about evaluating conditions as true or false, without explaining what that
really means. Usually you don't need to worry about it, but here are the details anyway.

Boolean (true/false) values in MiniScript are represented as numbers. When conditions are
evaluated for if and while statements, a value of 0 (zero) is considered false; any other
value is considered true. In fact the built-in keywords true and false are exactly
equivalent to the numbers 1 and 0 respectively.

When you use comparison operators such as == (equal), != (not equal), > (greater than),
and <= (less than or equal), these compare their operands and evaluate to either 1 (if true) or
0 (if false).

See the Numbers section of the Data Types chapter for more boolean operations you can
apply to numbers (including and, or, and not).

Finally, in a context that demands a truth value — that is, in an if and while statement, or
as an operand of and, or, and not — other data types will be considered false if they are
empty, and true if they are not empty. So an empty string, list, or map is equivalent to 0
(zero), and any non-empty string, list or map is equivalent to 1 in these contexts. The special
value null is always considered false.

 - -12

MiniScript Manual

Data Types
things you can store and manipulate
Variables in MiniScript are dynamically typed; you can store any type of data in any variable.
But what types of data are there? In MiniScript, there are four primary data types: numbers,
strings, lists, and maps. There are a couple of other more obscure types, such as function
and null. Everything else, including classes and objects, is actually a special case of a map.

Numbers
All numeric values in MiniScript are stored in standard full-precision format (also known as
“doubles” in C-derived languages). Numbers are also used to represent true (1) and false (0).

Numeric literals are written as ordinary numbers, e.g. 42, 3.1415, or -0.24.

You can use the following operators on numbers (where a and b are numbers).

Note that and, or, and not are not functions; they are operators, and go between (or in the
case of not, before) their operands just like all the others.

a + b addition numeric sum of a and b

a - b subtraction numeric difference of a and b

a * b multiplication a multiplied by b

a / b division a divided by b

a % b modulo remainder after dividing a by b

a ^ b power a raised to the power of b

a and b logical and a * b, clamped to the range [0,1]

a or b logical or a + b - a*b, clamped to the range [0,1]

not a negation 1 - abs(a), clamped to the range [0,1]

a == b equality 1 if a equals b, else 0

a != b inequality 1 if a is not equal to b, else 0

a > b greater than 1 if a is greater than b, else 0

a >= b greater than or equal 1 if a is greater than or equal to b, else 0

a < b less than 1 if a is less than b, else 0

a <= b less than or equal 1 if a is less than or equal to b, else 0

 - -13

MiniScript Manual

You can check whether a variable contains a number with the isa operator. There is an
intrinsic class called number, and x isa number returns true (1) whenever x is, in fact,
a number.

Strings
Text values in MiniScript are stored as strings of Unicode characters. String literals in the
code are enclosed by double quotes ("). Be sure to use ordinary straight quotes, not the
fancy curly quotes some word processors insist on making.

If your string literal needs to include quotation marks, you can do this by typing the
quotation marks twice. For example:

s = "If you do not help us, we shall say ""Ni"" to you."

Strings may be concatenated with the + operator, and if you try to add a number and a string
together, the number will be automatically converted to a string and then concatenated.
Strings may also be replicated (repeated) or cut down to a fraction of their former selves, by
multiplying or dividing them by a number.

s = "Spam" * 5 // SpamSpamSpamSpamSpam
s = s / 2 // SpamSpamSp

The full set of string operators is shown below; s and t are strings, and n and m are numbers.

s + t concatenation string formed by concatenating t to s

s - t subtraction (chop) if s ends in t, returns s with t removed; otherwise just returns s

s * n replication s repeated n times (including some fractional amount of s)

s / n division equivalent to s * (1/n)

s[n] index character n of s (all indexes are 0-based; negative indexes count from end)

s[:n] left slice substring of s up to but not including character n

s[n:] right slice substring of s from character n to the end

s[n:m] slice substring of s from character n up to but not including character m

s == t equality 1 if s equals t, else 0 (all string comparisons are case-sensitive)

s != t inequality 1 if s is not equal to t, else 0

s > t greater than 1 if s is greater than (collates after) t, else 0

s >= t greater than or equal 1 if s is greater than or equal to t, else 0

s < t less than 1 if s is less than (collates before) t, else 0

s <= t less than or equal 1 if s is less than or equal to t, else 0

 - -14

MiniScript Manual

The table above does not include and, or, and not, but these operators work perfectly well
on strings through boolean coercion (see "The Nature of Truth" in the previous chapter). In
any boolean context, s is considered true if it contains any characters, and false if it is the
empty string.

Also not listed is behavior of the isa operator with strings. There is an intrinsic type called
string, and s isa string returns true (1) for any string s.

The slice operators deserve a bit of explanation. The basic syntax is s[n:m], which gets a
substring of s starting at character n, and going up to (but not including) character m, where
we number characters starting from 0. But this basic syntax is extended with a handful of
neat tricks:

1. You may specify just a single index, leaving out the colon, to get a single character. Thus
s[0] is the first character, s[1] is the second, etc.

2. You may use a negative index, and it will count from the end. So s[-1] is the last
character, s[-2] is the next-to-last, etc. This works for any of the slice indexes.

3. You may omit the first index from the two-index form, and it will default to 0. This is a
handy way to get the first n characters of a string. So s[:3] returns the first 3 characters
of s; s[:-3] returns all but the last three characters of s.

4. You may omit the last index from the two-index form, and it will continue to the end of
the string. Thus, s[3:] skips the first three characters and returns the rest of the string.

The way these indexes work results in a lot of very handy properties. For example, s[:n] +
s[n:] == s for any value of n from 0 through s.len; in other words, there is a very
natural syntax for splitting a string into two parts, which is a fairly common thing to do.

Finally, note that strings are immutable; just like numbers, you can never change a string,
but you can create a new string and assign it to an existing variable. The following example
shows one correct and one incorrect way to change “spin” into “spun”.

s = "spin"
s = s[:2] + "u" + s[3:] // OK
s[3] = "u" // no can do (Runtime Error)

Lists
The third basic data type in MiniScript is the list. This is an ordered collection of elements,
accessible by index starting with zero. Each element of a list may be any type, including
another list.

 - -15

MiniScript Manual

You define a list by using square brackets around the elements, which should be separated
with commas.

x = [2, 4, 6, 8]

The code above creates a list with four elements and assigns it to x. But again, list elements
don't have to be numbers; they can also be strings, lists, or maps. Here's another example.

x = [2, "four", [1, 2, 3], {8:"eight"}]

Working with a list is very much like working with a string. You can concatenate two lists
with +, replicate or cut a list with * and /, and access elements or sublists using the same
slice syntax. Here are the operators valid on lists, where p and q are lists, and n and m are
numbers.

In addition, you can use x isa list to check whether any variable x contains a list.

The slice operators work exactly the same way as with strings. So p[-1] is the last element
of list p; p[3:] skips the first three elements and returns the rest of the list, and so forth.

However, there is one important difference: lists are mutable. You can change the contents
of a list (by assigning to p[n] or using one of the list methods like p.push), and no matter
how many different variables are referring to that list, they will all see the change. The
following example illustrates.

a = [1, 2, 3] // creates a list and assigns to a
b = a // assigns that SAME list to b
a[-1] = 5 // changes the last element of our list to 5
print b // prints: [1, 2, 5]

Because a and b both refer to the same list, any changes (mutations) made to that list can be
seen from either variable.

If you want to be sure you have a fresh copy of a list, rather than a shared reference, a
common trick is to use [:] to make a slice that includes the entire list. This copies the
elements into a new list. Compare the following example to the previous one.

p + q concatenation list formed by concatenating q to p

p * n replication p repeated n times (including some fractional amount of p)

p / n division equivalent to p * (1/n)

p[n] index element n of p (all indexes are 0-based; negative indexes count from end)

p[:n] left slice sublist of p up to but not including element n

p[n:] right slice sublist of p from element n to the end

p[n:m] slice sublist of p from element n up to but not including element m

 - -16

MiniScript Manual

a = [1, 2, 3] // creates a list and assigns to a
b = a[:] // assigns a COPY of that list to b
a[-1] = 5 // changes the last element of our first list to 5
print b // prints: [1, 2, 3] (our copy hasn't changed)

Maps
The final basic data type in MiniScript is the map. A map is a set of key-value pairs, where
each unique key maps to some value. In some programming environments, this same
concept is called a dictionary.

Create a map with curly braces around a comma-separated list of key-value pairs. Specify
each pair by separating the key and value with a colon, as shown here.

m = {1:"one", 2:"two", 3:"three"}

The map created here contains three key-value pairs, each mapping a number to a string
(which happens to be the English word for that number in this example).

Map keys should be numbers or strings, and must be unique; if you reuse a key, the previous
value is replaced. (Technically a key may be a list or another map as well, but in this case, it's
important that you do not mutate the key, or the behavior is undefined.) Values may be any
type, including lists or maps. Order within a map is not preserved; for loops iterate over a
map in arbitrary order.

Maps support only a handful of operators (d and e are maps, k is a key, and v is a value):

There are two ways to get and set members of a map. The first is to use the square-brackets
index operator, just as with strings or lists, except that in the case of a map, the key can be a
string as well as a number (or even a list or another map, if you are very careful).

d = {"yes":"hai", "no":"iie", "maybe":"tabun"}
print d["maybe"] // prints: tabun
d["maybe"] = "kamo"
print d["maybe"] // prints: kamo

The second way is using the dot indexer. This works only in the special case where the key is
a string that is a valid identifier: it begins with a letter, and contains only letters, numbers,
and underscores. In this case you can write the key after a dot rather than enclosing it in
square brackets and quotation marks — the key essentially becomes an identifier in the
language. The following is functionally equivalent to the previous example.

d + e concatenation map formed by assigning d[k] = v for every k,v pair in e

d[k] index value associated with key k in d

d.k dot index value associated with (string) k in d

 - -17

MiniScript Manual

d = {"yes":"hai", "no":"iie", "maybe":"tabun"}
print d.maybe // prints: tabun
d.maybe = "kamo"
print d["maybe"] // prints: kamo

This dot indexer is mostly syntactic sugar that makes accessing elements of a map easier to
read and write. But there are some subtle differences in cases where the map represents a
class or object, as described in the next chapter.

Finally, like the other basic types, there is an intrinsic class that represents maps — map in
this case. So x isa map will return true for any map (including any class or object, as
you'll see in the next section).

Type Checking
The isa operator was mentioned several times above. This is how you can check, at
runtime, what sort of data you have. In many cases you won't care, thanks to MiniScripts
automatic type conversion. But sometimes you do.

Suppose for example you want to make a method that prints its argument surrounded by
parentheses... but if the caller passes in a list, then you want to join the elements of that list
with commas. You could accomplish that with isa.

spew = function(x)
 if x isa list then x = x.join(", ")
 print "(" + x + ")"
end function

spew 42 // prints: (42)
spew [18, 42, "hike!"] // prints: (18, 42, hike!)

Extending Built-In Types
The four built-in types — number, string, list, and map — are just ordinary maps, like
your own classes (which you'll learn about next, I promise). You can add new methods to
them, and then invoke those methods using dot syntax on ordinary numbers, strings, lists,
and maps. (The only limitation is that you can't use dot syntax with a numeric literal.) If
this sounds like Greek to you, don't worry — it's an advanced feature, and one most users will
never need.

 - -18

MiniScript Manual

Complete Operator List
The table below shows all the operators in the MiniScript language, along with their
precedence. Operands in an expression chain will always be grouped by higher-precedence
operators before lower-precedence ones; e.g., x + y * z is processed as x + (y * z),
because the * operator is higher precedence than the + operator.

Operator Meaning Precedence

A = B assignment 0

A or B logical OR: true if either operand is true 1

A and B logical AND: true if both operands are true 2

not A logical negation: true if its operand is false, and vice versa 3

A isa B type checking 4

A == B equality comparison: true if operands are equal 5

A != B inequality comparison: true if operands are not equal 5

A > B greater-than comparison 5

A < B less-than comparison 5

A >= B greater-than or equal-to comparison 5

A <= B less-than or equal-to comparison 5

A + B addition or concatenation 6

A - B subtraction or string trimming 6

A * B multiplication or replication 7

A / B division or reduction 7

A % B modulo (remainder) 7

-A unary minus (numeric negation) 8

new A instantiation 9

@A address-of (reference function without invoking it) 10

A ^ B power: A raised to the power of B 11

A[B] indexing 12

A[B:C] slicing 12

A(B, C...) calling a function 12

A.B dot operator 12

 - -19

MiniScript Manual

Functions and Classes
the building blocks of sophisticated software
A function is essentially a sub-program that does some particular task. We've already seen
some of the functions built into MiniScript, such as time and range, and even print.
There are many more of those, which will be documented in the next chapter. But the real
power of a programming language comes from defining your own functions.

Beyond that, as a program grows in size and complexity, it becomes useful to start organizing
it into classes. A class is basically a collection of functions and data, where objects of a class
share the same functions but may have unique data.

Functions
A function in MiniScript is a special data type, at the same level as numbers, strings, lists,
and maps. You can define a function with the function keyword, assign it to a variable,
and then invoke it via that variable, just like the built-in functions. Here's an example.

triple = function(n=1)
 return n*3
end function
print triple // prints: 3
print triple(5) // prints: 15

This declares a function that triples any value given to it, and assigns that function to a
variable called triple. The triple function is then invoked, with and without an argument.

The syntax for declaring a function is:

function(parameters)
…
end function

where parameters is a comma-separated list of zero or more parameters, each of the form
name or name=defaultValue. When a function is invoked, arguments will be matched up to
the functions by position. If fewer arguments are given than parameters are defined, the
remaining parameters are given their default values — and if no default value was defined for
that parameter, then it is set to null.

Note that the parentheses after the function keyword are required only if there are
parameters. In the case of a function with no parameters, the parentheses are not required
(and by standard convention, should be omitted).

 - -20

MiniScript Manual

It's important to understand that a function is itself a bit of data. It's just that, whenever
looking up the value of a variable, MiniScript checks for this special function data type; and if
found, it invokes that function, rather than returning the function itself.

Usually that is exactly what is wanted, as in the example above. But occasionally you may
want to copy the function reference, rather than invoking the function. You can do this by
prepending your identifier with an @ (read “address of”). Example:

triple = function(n=1)
 return n*3
end function
x = @triple
print x(5) // prints: 15

Here we've again declared a function and stored it in a variable called triple. Then we
copy the address of that function into another variable called x. At this point we can invoke
the function either way, via triple or via x, and both do exactly the same thing. Had we
left out the @ on the assignment, MiniScript would have instead evaluated the function
triple refers to, and assigned the result (3) to x.

Here's a more realistic example. We'll define a function called apply which can apply a
given function to each element of a list. Then we can invoke this on a list with any function,
simply by using @ to refer to the function we want to apply.

apply = function(lst, func)
 result = lst[:] // make a copy of the list
 for i in indexes(result)
 result[i] = func(result[i]) // apply func to each element
 end for
 return result // return modified result
end function

print apply([1, 2, 3], @triple) // prints: [3, 6, 9]

To summarize, you invoke a function by simply using any identifier that refers to it. You
avoid this invocation, and refer instead to the function itself, by putting @ before the
identifier.

Nested Functions
MiniScript allows you to define functions within functions. This is an advanced feature that
most users may never need, but it can come in handy on occasion, especially in conjunction
with something like the “apply” method above. Just as with any other local value, you might
want to avoid cluttering the global namespace just for a function that you only use in one
place. Here’s a simple example that assumes we have the apply method defined above.

doubleAll = function(lst)

 - -21

MiniScript Manual

 f = function(x)
 return x + x
 end function
 return apply(lst, @f)
end function

So inside the function referred to by the (global variable) doubleAll, we define another
function, and assign it to the (local variable) f. Then we pass that function in as the second
argument to the apply function (or more pedantically, to the function referred to by the
apply global variable).

When you have a nested function like this, it can access the local variables of the function
that contains it. Just as with global variables, it can do this without any prefix (as long as
there isn’t some local variable with the same name getting in the way). But to assign to a
variable of the outer function, you must use the special identifier outer. Here’s an example.

makeList = function(sep)
 counter = 0
 makeItem = function(item)
 outer.counter = counter + 1
 return counter + sep + item
 end function
 return [makeItem("a"), makeItem("b"), makeItem("c")]
end function

print makeList(". ")

Here, makeList refers to the outer function, and makeItem is the inner (nested) function.
Notice how makeList has a local variable called counter, initialized to 0. But the inner
function both reads that value, and updates it using outer.counter. Work through this
code carefully to see if you can figure out what it prints... and then try it and see if you were
right!

Again, this nested-function business is an advanced feature which beginners can safely forget
about. But for advanced users, it is a language feature worth understanding.

 - -22

MiniScript Manual

Classes and Objects
MiniScript supports object-oriented programming (OOP) via prototype-based inheritance.
That is, there is fundamentally no difference in MiniScript between a class and an object; the
difference, when it exists at all, lives solely in the intent of the programmer.

A class or object is a map with a special __isa entry that points to the parent (prototype).
This is an implementation detail you rarely need to worry about, because it is handled
automatically by the following rules:

1. When you create a map using the special new operator, the __isa member is set for you.

2. When you look up an identifier in a map, MiniScript will walk the __isa chain looking
for a map containing that identifier. The value returned is the first value found.

3. Finally, the isa operator also walks the __isa chain, and returns true if any map in that
chain matches the right-hand operand. In other words, x isa y returns true if x is y, or
any subclass of y.

These simple rules provide almost everything needed for object-oriented programming. A
series of "classes" may be defined as maps containing functions and default data, which are
inherited or overridden as needed. An "object" is just another map, inherited from some
class, which normally contains only custom data.

Let's illustrate with an example. We'll define a class called Shape, with a subclass called
Square.

Shape = {}
Shape.sides = 0

Square = new Shape
Square.sides = 4

A base class is just an ordinary map; in this case, we added a sides entry with a value of 0,
signifying that “sides” is a bit of data we expect every Shape to have. Then we created a
subclass by using new Shape, and assigned this to Square. In Square, we overrode the
value of sides (as all squares should have 4 sides).

Now let’s create an instance of our Square class, again by using new.

x = new Square
print x.sides // prints: 4

Notice how we’re using the traditional OOP terminology of “class” and “instance” for
convenience, but in reality, there are just three maps — Shape is the prototype of Square, and
Square is the prototype of x. The __isa member of each map points to the prototype,
because we created them with new.

 - -23

MiniScript Manual

Now let’s add a function to the Shape class, which should work for any shape subclass or
object.

Shape.degrees = function
 return 180 * (self.sides - 2)
end function

print x.degrees // prints: 360

This example illustrates one additional rule important to object-oriented programming:

• When a function is invoked via dot indexing, it receives a special self variable that refers
to the object on which it was invoked.

So in the example above, we invoked the degrees function as x.degrees, which looks for
a member called “degrees” in x (and its prototypes via the __isa chain). And when that
function is invoked, a special local variable called self is bound to the x object, i.e. the first
map in the search chain. This allows class functions to access object data.

There is just one more bit of special support for object-oriented programming, and that is
the super keyword. This is another built-in variable (similar to self) defined when you
invoke a method via dot syntax, but when you call another method via super, it invokes that
method on the base class, while keeping self bound to the same value as in the current
function. In other words, super lets you call a superclass method, even if you've overridden
it. Continuing the previous example, suppose we want to define a subclass of Square that
always has 42 more degrees than nonmagical shapes would have:

MagicSquare = new Square
MagicSquare.degrees = function
 return super.degrees + 42
end function

y = new MagicSquare
print y.degrees // prints: 402

Notice how the MagicSquare.degrees function calls super.degrees. That causes
MiniScript to walk the __isa chain, looking for the first implementation of degrees it can
find. That would be Shape.degrees, so it invokes that, with a self still bound to y.

 - -24

MiniScript Manual

Extending the Built-In Types
There are maps that represent each of the basic data types: number, string, list, and
map. These contain the built-in methods for those types. By adding new methods to one of
these maps, you can add new methods usable with dot syntax on values of that type.

For example, while there are built-in string methods .upper and .lower to convert a string to
upper- or lower-case, there isn’t a method to capitalize a string — that is, convert only the
first letter to uppercase. But you could add such a method in your program as follows.

string.capitalized = function
 if self.len < 2 then return self.upper
 return self[0].upper + self[1:]
end function

The function itself is fairly simple: if our string (self) is less than 2 characters long, just
uppercase the whole thing; otherwise uppercase the first letter, and append the rest. But
because we have assigned this function to string.capitalized, that is, added it to the
string map, we can call it with dot syntax on any string.

print "miniScript".capitalized // prints: MiniScript

There is one limitation to this trick. Numbers are a little different from other data types;
MiniScript does not support dot syntax on numeric literals. So

x = 42
x.someMethod

works fine (assuming you have defined an appropriate number.someMethod function), but

42.someMethod

does not.

 - -25

MiniScript Manual

Intrinsic Functions
built-in functions you can rely on
MiniScript comes with a standard set of built-in (or intrinsic) functions. Many of these are
globals (i.e., referred to by variables in the global space). Others (particularly functions
intended for use with strings, lists, and maps) are normally invoked via dot syntax after an
identifier.

In fact, though, all intrinsic functions that use dot syntax are written in such a way that they
can also be invoked as global functions. So, for example, you can get the length of a string s
by typing s.len, but you can also do the same thing as len(s).

The following tables list the standard intrinsic functions, divided by data type on which they
operate. Keep in mind that MiniScript is intended to be embedded in some host
environment, such as a game or application. The host will normally add additional intrinsic
functions particular to that environment. Please consult the documentation or help
materials for your host environment for information on these extra functions.

Numeric Functions
MiniScript includes a selection of trigonometric functions, which all work in radians (rather
than degrees), and other math functions, as well as random numbers and conversion of
numbers into strings.

In the following table, x is any number, i is an integer, and r is a number of radians.

abs(x) absolute value of x

acos(x) arccosine of x, in radians

asin(x) arcsine of x, in radians

atan(y, x=1) arctangent of y/x, in radians (returns correct quadrant if optional x parameter is used)

bitAnd(x, y) treats x and y as integers, and returns bitwise "and" of a and b

bitOr(x, y) treats x and y as integers, and returns bitwise "or" of a and b

bitXor(x, y) treats x and y as integers, and returns bitwise "exclusive or" of a and b

ceil(x) next whole number equal to our greater than x

char(i) returns Unicode character with code point i (see string .code for the inverse function)

cos(r) cosine of r radians

floor(x) next whole number less than or equal to x

 - -26

MiniScript Manual

String Functions
All string functions except slice are designed to be invoked on strings using dot syntax, but
can also be invoked as globals with the string passed in as the first parameter. Note that
strings are immutable; all string functions return a new string, leaving the original string
unchanged. In the following table, self refers to the string, s is another string argument, and
i is an integer number.

log(x, base=10) logarithm (with the given base) of x, i.e., the value y such that base^y == x

pi 3.14159265358979

range(x, y=0,
step=null)

returns a list containing values from x through y, in increments of step; step == null is
treated as a step of 1 if y > x, or -1 otherwise

round(x, d=0) x rounded to d decimal places

rnd(seed=null) if seed=null, returns random number in the range [0,1);

if seed != null, seeds the random number generator with the given integer value

sign(x) sign of x: -1 if x < 0; 0 if x == 0; 1 if x > 0

sin(r) sine of r radians

sqrt(x) square root of x

str(x) converts x to a string

tan(r) tangent of r radians

.code Unicode code point of first character of self (see numeric char function for inverse)

.hasIndex(i) 1 if i is in the range 0 to self.len-1; otherwise 0

.indexes range(0, self.len-1)

.indexOf(s, after=null) 0-based position of first substring s within self, or null if not found; optionally
begins the search after the given position

.insert(index, s) returns new string with s inserted at position 0

.len length (number of characters) of self

.lower lowercase version of self

.remove(s) self, but with first occurrence of substring s removed (if any)

.replace(oldval, newval,
maxCount=null)

returns a new string with up to maxCount occurrences of substring oldval
replaced with newval (if maxCount unspecified, then replaces all occurrences)

.upper uppercase version of self

.val converts self to a number (if self is not a valid number, returns 0)

.values list of individual characters in self (e.g. "spam".values = ["s", "p", "a", "m"]

 - -27

MiniScript Manual

List Functions
All list functions except slice are designed to be invoked on lists using dot syntax, but can
also be invoked as globals with the list passed in as the first parameter. Lists are mutable;
the pop, pull, push, shuffle, and remove functions modify the list in place. To use a list
like a stack, add items with push and remove them with pop. To use a list like a queue, add
items with push and remove them with pull.

In the following table, self is a list, i is an integer, and x is any value.

slice(s, from, to) equivalent to s[from:to]

.split(delimiter=" ",
maxCount=null)

splits the string into a list by the given delimiter, with at most maxCount entries (if
maxCount is unspecified, then splits into a list of any size)

.hasIndex(i) 1 if i is in the range 0 to self.len-1; otherwise 0

.indexes range(0, self.len-1)

.indexOf(x, after=null) 0-based position of first element matching x in self, or null if not found; optionally
begins the search after the given position

.insert(index, value) inserts value into self at the given index (in place)

.join(delimiter=" ") builds a string by joining elements by the given delimiter

.len length (number of elements) of self

.pop removes and returns the last element of self (like a stack)

.pull removes and returns the first element of self (like a queue)

.push(x) appends the given value to the end of self; often used with pop or pull

.shuffle randomly rearranges the elements of self (in place)

.sort(key=null) sorts list in place, optionally by value of the given key (e.g. in a list of maps)

.sum total of all numeric elements of self

.remove(i) removes element at index i from self (in place)

.replace(oldval, newval,
maxCount=null)

replaces (in place) up to maxCount occurrences of oldval in the list with newval

(if maxCount not specified, then all occurrences are replaced)

slice(list, from, to) equivalent to list[from:to]

 - -28

MiniScript Manual

Map Functions
Functions on maps are very similar to functions on lists. Maps (like lists) are mutable; the
push, pop, remove, and shuffle methods modify the map in place. You can treat a map
like a set using push, which inserts 1 (true) for the value of the given key, and pop, which
returns a key and removes it (and its value) from the map. Keep in mind that the order of
keys in a map is undefined.

In the following table, self is a map, i is an integer, and x is any value.

.hasIndex(x) 1 if x is a key contained in self; 0 otherwise

.indexes list containing all keys of self, in arbitrary order

.indexOf(x, after=null) first key in self that maps to x, or null if none; optionally begins the search after the
given key

.len length (number of key-value pairs) of self

.pop remove and return an arbitrary key from self

.push(x) equivalent to self[x] = 1

.remove(x) removes the key-value pair where key=x from self (in place)

.replace(oldval, newval,
maxCount=null)

replaces (in place) up to maxCount occurrences of value oldval in the map with
newval (if maxCount not specified, then all occurrences are replaced)

.shuffle randomly remaps values for keys

.sum total of all numeric values in self

.values list containing all values of self, in arbitrary order

 - -29

MiniScript Manual

System Functions
The following functions relate to the operation of MiniScript itself, or interact with the host
environment. The latter (print, time, and wait) are only quasi-standard, in that support for
them depends on the host application, and so they may not function in some environments.

globals reference to the global variable map

intrinsics a map containing all the global intrinsic functions

locals reference to the local variable map for the current call frame

print(x, delim) convert x to a string and print to some text output stream, optionally followed by delim;
if delim is not specified, the output is followed by a line break in most environments

refEquals(a,b) returns 1 if a and b refer to the same instance (not just equal values)

stackTrace returns the current call stack, as a list of strings

time number of seconds since program execution began

wait(x=1) wait x seconds before proceeding with the next MiniScript instruction

yield wait for next invocation of main engine loop (e.g., next frame in a game)

 - -30

MiniScript Manual

Examples
small programs that do interesting things
While we’ve given short examples of MiniScript code throughout this manual, this chapter
presents several longer, more interesting examples. Many of the tasks illustrated are taken
from RosettaCode, an online database of programming challenges with solutions in many
languages. You can go there to compare the MiniScript solution to any other language; you
may be amazed how much more readable MiniScript is than the alternatives.

FizzBuzz
FizzBuzz is a standard introductory-level programming challenge . The task is simple: print 1

the numbers 1 through 100, but: for multiples of three, print “Fizz” instead of the number;
for multiples of five, print “Buzz” instead of the number, and for any number that’s a
multiple of three and five, print “FizzBuzz”.

There are clearly many ways to tackle this; here’s one.

1. fizzBuzz = function(n)
2. for i in range(1, n)
3. s = "Fizz" * (i%3==0) + "Buzz" * (i%5==0)
4. if s == "" then s = str(i)
5. print s
6. end for
7. end function
8. fizzBuzz 100

Instead of just hard-coding a loop from 1 to 100, we’ve made a function that can FizzBuzz up
to any number. Within that function, the only clever bit is line 3, which takes advantage of a
couple of MiniScript features. First, comparisons (such as i%3==0 — read “i mod 3 equals
zero”) evaluate to 1 when true, or 0 when false. Second, you can multiply a string by a
number to repeat it that many times. This means that if you multiply a string by a condition,
you get either the original string (if the condition is true) or the empty string (if it is false).

That lets us easily generate “Fizz”, “Buzz”, and “FizzBuzz” depending on what our loop
counter is divisible by. Line 4 simply fills in the number if we don’t get one of those strings.
(Quiz: can you rewrite this line to use the same multiply-by-condition trick as line 3?)

 http://rosettacode.org/wiki/FizzBuzz1

 - -31

http://rosettacode.org/wiki/FizzBuzz

MiniScript Manual

Filter
Here’s another RosettaCode task : select certain elements from an Array into a new Array in 2

a generic way. To demonstrate, select all even numbers from an Array.

1. filter = function(seq, f) // filter seq to where f is true
2. result = []
3. for i in seq
4. if f(i) then result = result + [i]
5. end for
6. return result
7. end function
8.
9. isEven = function(x)
10. return x % 2 == 0
11.end function
12.
13.list = [2,3,5,6,8,9]
14.print filter(list, @isEven)

This is a pretty straightforward conversion of the task description into MiniScript code. Our
filter function takes a list and a function, and builds a new list by appending each element
where the function, applied to that element, is true.

We illustrate by making an isEven function that returns true only when its argument mod 2
is zero (i.e., the argument is evenly divisible by 2). Then we pass @isEven to find just the
even elements of a given list.

Greatest Common Divisor
Here’s a function that finds the biggest number that can divide evenly into two given
numbers . Middle schoolers everywhere will soon be out of work. 3

1. gcd = function(a, b)
2. if a == 0 then return b
3. while b != 0
4. newA = b
5. b = a % b
6. a = newA
7. end while
8. return abs(a)
9. end function
10.print gcd(-21, 35)

The algorithm here, known as the “Euclidian algorithm for finding the GCD,” is clever. The
actual MiniScript code is simple.

 http://rosettacode.org/wiki/Filter2

 http://rosettacode.org/wiki/Greatest_common_divisor3

 - -32

http://rosettacode.org/wiki/Greatest_common_divisor
http://rosettacode.org/wiki/Filter

MiniScript Manual

Maximum Element
MiniScript does not have a standard intrinsic for finding the maximum element of a list. But
you can easily add it yourself, using this code.

1. max = function(seq)
2. if seq.len == 0 then return null
3. max = seq[0]
4. for item in seq
5. if item > max then max = item
6. end for
7. return max
8. end function
9. print max([5, -2, 12, 7, 0])

Pretty simple stuff. Line 2 checks to make sure the sneaky user hasn’t given us an empty list;
if they have, we return null, as there is no sensible max in that case. Otherwise, we just
suppose it’s the first element, and then loop over each element in the list, keeping the
biggest.

Notice that the max variable assigned to on line 1 is in the global variable space, while the
max assigned on lines 3 and 5 (and then returned on line 7) is local to a function. These
happen to have the same name, but have nothing to do with each other. As a matter of style,
it might have been better to name the local variable result rather than max. But it seemed
like a good opportunity to demonstrate how local and global variables are separate, even if
they have the same name.

Titlecase
MiniScript has intrinsics to convert a string to all upper- or lower-case letters. But what if
you want to capitalize just the first letter of each word, and lowercase the rest?

1. titlecase = function(s)
2. result = ""
3. for i in s.indexes
4. if i == 0 or s[i-1] == " " then
5. result = result + s[i].upper
6. else
7. result = result + s[i].lower
8. end if
9. end for
10. return result
11.end function
12.print titlecase("SO LONG and thanks for all the fish")

We just iterate over the string, capitalizing each letter that is either the very first character in
the string, or is preceded by a space, and lower-casing the rest.

 - -33

MiniScript Manual

Titlecase (version 2)
The previous version of Titlecase works fine, but is somewhat suboptimal, because it grows a
string by adding to it character by character. This recopies the earlier characters in the string
many times. The following code shows a better way.

13.titlecase = function(s)
14. result = s.split("")
15. for i in s.indexes
16. if i == 0 or s[i-1] == " " then
17. result[i] = s[i].upper
18. else
19. result[i] = s[i].lower
20. end if
21. end for
22. return result.join("")
23.end function
24.print titlecase("SO LONG and thanks for all the fish")

Here we start by splitting the string into characters (by using the empty string as the
delimiter to split on). Then we iterate over the string, updating each character in our list,
and join them back together at the end.

 - -34

