
the neo-retro classic-modern
home computer

from an alternate universe

MiniScript at the Prompt
You can type any MiniScript commands
at the "] " command prompt.
]print "Hello world!"
Hello world!

See the last page of this document for a
quick rundown on the MiniScript
language. Or go to http://miniscript.org
for more help.
Press up arrow to recall the last
command. When more input is needed,
the prompt will change to "...]". Press
Control-C to break an infinite loop or
reset the prompt.

Basic Commands
clear clear/reset display
help get online help
pprint value pretty-print a map or list

Disk and Files
There are usually two disks available,
"/sys" and "/usr". /sys is the system
disk; it contains demos, game assets,
libraries, etc. It is a read-only disk; you
cannot modify its contents. /usr is the
user disk; you can use it however you
like. This is where you will store your
own MiniScript programs. Click the top
disk slot to create a new disk, or mount
a zip file or folder as /usr.
Remember that the command prompt
runs MiniScript, not some other shell.
So you must use quotation marks
around file names and paths in all
commands.

Global File Commands
pwd print working directory
cd path change working directory
dir list files
mkdir path create a new directory
delete path delete a file from disk
view path preview any file

File module
The global file module contains more
methods for working with files and
paths. Use these like file.curdir, etc:
.curdir return working directory
.setdir path same as cd
.makedir path create a new directory
.children(path) get files within directory
.name(path) get file name from path
.parent(path) get path to parent directory
.exists(path) return whether file exists
.info(path) get map of file details
.child(base, subpath) — combine path parts
.delete path delete a file
.move from, to move/rename a file
.copy from, to copy a file
.readLines(path)return file contents as list
.writeLines path, list — store list as text file
.loadImage(path) — load an image file
.saveImage path, img, [quality]
.loadSound(path) — load a sound file
.export path export file to host OS
.import path import file from host OS
.open(path, mode) — return a file handle

File Handle
A file handle object is returned from
file.open, and is used for more detailed
input and output with a particular file.
.isOpen is the file still open?
.position get/set read/write position
.atEnd is position at end of file?
.write s write string to file
.writeLine s write string followed by EOL
.read [bytes] return file data as string
.readLine return next line of file
.close close the file when done

Handling Programs
Mini Micro has one "current program" in
memory at a time. The commands
below let you load, save, edit, run, or
clear this program.
load filename load a program
source show source code listing
run run current program
edit edit current program
save [path] save program to disk
reset clear program from memory
The code editor (invoked with edit) has
a lot of nice features, both in the toolbar
and via keyboard shortcuts. Try it!

Key & Mouse Input
input(prompt) return a line of user input
key.available is there a key in the buffer?
key.get return next key pressed
key.clear clear the key buffer
key.pressed(k) is key k currently pressed?
key.keyNames all names for key.pressed
key.axis(h) value of analog axis h
mouse.x current mouse X position
mouse.y current mouse Y position
mouse.button(which=0) — return whether

the given mouse button is pressed
mouse.visible show the mouse cursor?
Key names for key.pressed are shown
in the table below. Axis names are
"Horizontal", "Vertical", and "Joy1Axis1"
through "Joy8Axis29". Note that
"joystick" refers to any game input
device (gamepad, flight stick, etc.).

Key names for key.pressed

normal keys "a", "b", "c", …

number keys "1", "2", "3", …

arrow keys "up", "down",
"left", "right"

keypad keys "[1]", "[2]", "[3]", …
"[+]", "[-]", "[/]", "[*]"

function keys "f1", "f2", "f3", …

modifier keys "left shift", "right
shift",
"left ctrl", "right ctrl",
"left alt", "right alt",
"left cmd", "right cmd"

special keys "backspace", "tab",
"return", "escape",
"space", "delete",
"enter", "insert",
"home", "end",
"page up", "page down"

mouse buttons "mouse 0", "mouse 1", …

joystick buttons
(any joystick)

"joystick button 0",
"joystick button 1", …

buttons on a
specific joystick

"joystick 1 button 0",
"joystick 2 button 0", …

v1.0

"Getting Started" Example
cd "/sys/demo"
dir
load "ticTacToe"
run

clear

About this Document

Property names shown in orange
can be read or assigned new
values, like any variable:
text.row = 25

Method names shown in blue can
be called and may return results,
but you don't assign new values to
them:
text.clear
print text.cell(0,0)

http://miniscript.org

Displays
Mini Micro has an 8-layer display.
Display 0 is closest to the user; display
7 in is the back. You can see through
transparent displays to any higher-
numbered display layers behind. Each
display can be one of several modes:
0. displayMode.off hidden/off
1. displayMode.solidColor solid color
2. displayMode.text text display
3. displayMode.pixel pixel buffer
4. displayMode.tile tile display
5. displayMode.sprite sprite display
The default setup is shown in the
diagram below. Change any display by
assigning one of the above values to
display(n).mode, where n is from 0 to 7.
Then get a reference to display(n), and
use the methods on the appropriate
Display subclass.

Solid Color Display
Simply displays the same color across
the whole screen. Translucent colors
work too. Useful for fade in/out or as
background.
.color display color

Text Display
A 68-by-26 character display. Every cell
may have its own colors and inverse
mode; the properties below mostly
affect subsequent printing. Note that
text is a global reference to the "default"
text display, i.e., the one used by print
and input.
.color text color (for later print)
.backColor background color
.column, .row cursor column and row
.inverse when true, swap colors
.delimiter follows every print
.clear clears the display
.cell(x,y) get character at col x, row y
.setCell x, y, k stuff k into col x, row y
.cellColor(x,y) get text color in a given cell
.setCellColor x, y, c — set text color
.cellBackColor(x,y) — get background color
.setCellBackColor x, y, c — set bkgnd color
.print s print to this display
Note that the standard text.delimiter is
char(13), which causes a line break.
Use "" (empty string) for no delimiter.

Pixel Display
A 960-by-640
display made of
pixels. gfx is a
handy reference
to the default
pixel display.
.color default drawing color
.width, .height get display size, in pixels
.clear [clr, w, h] fill display with given color
.pixel(x,y) get pixel color at x,y
.setPixel x, y, clr set pixel color at x,y
.scrollX, .scrollY offsets display in X and Y
.scale scale factor or [x,y] factors
The drawing methods below all do what
they say. Not shown here are two
optional parameters: color and penSize.
.line x1, y1, x2, y2
.drawRect left, bottom, width, height
.fillRect left, bottom, width, height
.drawEllipse left, bottom, width, height
.fillEllipse left, bottom, width, height
.drawPoly points
.fillPoly points
The functions below work with the
Image class:
.drawImage img, left, bottom, width, height,

srcLeft, srcBottom, srcWidth, srcHeight
.getImage(left, bottom, width, height)
The .print method draws text to a pixel
display; this is slower than using a text
display, but more versatile. Available
fonts are "small", "normal", and "large".
.print str, x, y, color, font="normal"

Tile Display
A tile display shows a rectangular or
hexagonal grid of small images called
tiles. You can configure the size of and
number of these tiles, their overlap, and
an overall scroll position.
.clear [toIndex] set all tiles to null or index
.extent [cols, rows] map size
.tileSet image tiles draw from
.tileSetTileSize size of tiles in tileSet
.cellSize size of tiles on screen
.overlap cell overlap, in pixels
.oddRowOffset set to 0.5 for hex rows
.oddColOffset set to 0.5 for hex columns
.scrollX, .scrollY shifts all tiles on screen
.cell(x,y) get tile index for a cell
.setCell x, y, idx set tile index for a cell
.cellTint(x,y) get tint color of a cell
.setCellTint x, y, c set tint color of a cell
Some tile display properties (extent,
tileSetTileSize, cellSize, and overlap)
can be given either a simple number
which applies to both x and y, or an [x,y]
list.

Sprite Display
Each sprite display shows 0 or more
Sprites, which are little images that can
be efficiently moved, rotated, and
scaled. Sprites are layered in order,
with .sprites[0] at the back.
.clear removes all sprites
.sprites list of sprites to draw
.scrollX, .scrollY shifts all sprites on screen

Sprite Class
.image image (see file.loadImage)
.x, .y position of sprite on screen
.scale scale factor or [x,y] factors
.rotation angle in degrees
.tint tint color (white for no tint)
.localBounds bounds relative to this sprite
.worldBounds returns bounds on screen
.contains(pt) bounds-containment test
.overlaps(other) bounds-touching test

Bounds Class
.x, .y center of bounding box
.width, .height bounding box size
.rotation angle in degrees
.corners returns box corners as list
.overlaps b is this box touching box b?
.contains x,y is point x,y within this box?
The .contains method (of both Bounds
and Sprite) may also be given any map
with "x" and "y" keys, or an [x, y] list.

Image Class
Represents a rectangular array of
pixels; display with either Sprite.image,
or PixelDisplay.drawImage. Methods:
.width, .height image size, in pixels
.pixel(x,y) get pixel color at x,y
.setPixel x, y, clr set pixel color at x,y
.getImage(left, bottom, width, height)
Create an image from scratch with:
Image.create(width, height, color)

Colors
Colors in Mini Micro are represented as
strings in HTML format. The color map
contains the built-in colors shown below,
as well as these methods:
.rgb(r, g, b) get color from red, green,

and blue values (0-255)
.rgba(r, g, b, a) same, but with alpha
.lerp(c1, c2, t) interpolate between colors
.toList(c) get color as [r, g, b, a] list
.fromList(lst) convert [r, g, b, a] to color

7 06 5 4 3 2 1
solidColor pixel textsprite

640

960

https://miniscript.org/wiki

Sounds
Mini Micro supports both digitized and
synthesized sounds via the Sound
class. Use the file module to load a
sound from disk:
file.loadSound load a WAV file as a sound
To create a synthesized sound, make a
new Sound object, then set the
following properties:
.duration sound length (sec)
.freq frequency (Hz)
.envelope volume over time (0-1)
.waveform one cycle of sound wave
.fadeIn length of fade-in (sec)
.fadeOut length of fade-out (sec)
.loop set to 1 to loop until stopped
You can conveniently set duration, freq,
envelope, and waveform with the .init
method on the Sound class.

Frequency
The .freq property determines how
many times per second the waveform
will be repeated. The "A" above middle
C on a piano has a frequency of 440. A
global method provides the frequency
for any note:
noteFreq(n) frequency for note n
Middle C is note 60, C# is 61, etc.
Instead of specifying a single frequency,
you can provide a list of frequencies;
Mini Micro will then interpolate (slide)
between those frequencies over the
length of the sound.

Envelope
The .envelope property controls the
amplitude (volume) of the sound over its
duration. You may specify a single
number (the default is 1), or a list of
numbers, in which case Mini Micro will
interpolate the amplitude over the length
of the sound. A common choice is [1, 0]
which starts at full volume and then
fades to silence by the end of the
sound.

 

Waveform
The .waveform property determines the
tonal quality of the sound. This should
be a list of numbers between -1 and 1.
Mini Micro will interpolate over this list
for each repeat of the waveform — if
freq is 440, the waveform will be
repeated 440 times per second.
The Sound class has several built-in
waveforms for your convenience:
.sineWave sine wave (pure tone)
.triangleWave triangles (almost sine)
.sawtoothWave slightly "buzzier"
.squareWave most buzzy/retro sound
.noiseWave random static

Sound Mixing
You can combine two or more
synthesized sounds together to
create more complex sounds.
.mix(s2, lvl=1) add in sound s2,

at volume level lvl

Playing Sounds
Both digitized and synthesized
sounds are played with the .play
method:
.play v, p, s play sound at volume v,

with pan p and speed s
All parameters optional. Volume
should be between 1 and 0; pan
between -1 and 1 (full left/right); and
speed is a multiplier that changes
the playback speed and pitch
(default is 1).
Other methods on Sound objects:
.stop stop playing this sound
.isPlaying is sound currently playing?
Silence all sounds at once with:
Sound.stopAll stop all sounds
 

HTTP
The http module provides simple access
to downloading resources or making
REST calls on the interwebs.
.get(url, headers) download
.delete url, headers delete resource
.post url, data, headers post data to a URL
.put url, data, headers do an HTTP PUT
http.get can download images, sounds,
text, or raw data. http.post data may be
a string or a map.

Import Modules
There are a number of handy utilities
found in /sys/lib, which you can load
with the import command:
import "name" find & load module by name
These modules can define new values
and methods (accessed via a map with
the same name of the module), and add
new methods to built-in types. For more
info, see: help "import" 

(The MiniScript Quick Reference appears
on the next page for your convenience.)

Music Example
// notes defined as: [note, duration]
notes = [[60, 0.1], [64, 0.1], [67, 0.1],
 [72, 0.2], [67, 0.1], [72, 0.4]]
snd = new Sound
for n in notes
 snd.init n[1], noteFreq(n[0])
 snd.play
 wait snd.duration
end for

Sound Example 1
pew = new Sound
pew.init 0.3, [8000,100], [1,0]
pew.play

Sound Example 2
hitSnd = new Sound
hitSnd.init 1, 100, [1,0], Sound.noiseWave
hitSnd.play

Silly Sketch Example
clear
text.row = 25
print "Draw with the mouse!"
print "Press Esc to exit."
snd = new Sound

while not key.pressed("escape")
 m = {}
 m.x = mouse.x
 m.y = mouse.y
 if mouse.button then
 gfx.line prev.x, prev.y,
 m.x, m.y, color.gray, 5
 snd.init 0.1, 400 + m.y
 snd.play 0.5
 end if
 prev = m
 yield
end while

Welcome to MiniScript!
MiniScript is a high-level object-oriented
language that is easy to read and write.

Clean Syntax
Put one statement per line, with no
semicolons, except to join multiple
statements on one line.
Code blocks are delimited by keywords
(see below). Indentation doesn't matter
(except for readability).
Comments begin with //.
Don't use empty parentheses on
function calls, or around conditions in if
or while blocks.
All variables are local by default.
MiniScript is case-sensitive.

Control Flow
if, else if, else, end if
Use if blocks to do different things
depending on some condition. Include
zero or more else if blocks and one
optional else block.
if 2+2 == 4 then
 print "math works!"
else if pi > 3 then
 print "pi is tasty"
else if "a" < "b" then
 print "I can sort"
else
 print "last chance"
end if

while, end while
Use a while block to loop as long as a
condition is true.
s = "Spam"
while s.len < 50
 s = s + ", spam"
end while
print s + " and spam!"

for, end for
A for loop can loop over any list,
including ones easily created with the
range function.
for i in range(10, 1)
 print i + "..."
end for
print "Liftoff!"

break & continue
The break statement jumps out of a
while or for loop. The continue
statement jumps to the top of the loop,
skipping the rest of the current iteration. 

Data Types
Numbers
All numbers are stored in full-precision
format. Numbers also represent true (1)
and false (0). Operators:
+, -, *, / standard math
% mod (remainder)
^ power
and, or, not logical operators
==, !=, >, >=, <, <= comparison

Strings
Text is stored in strings of Unicode
cha rac te rs . Wr i t e s t r i ngs by
surrounding them with quotes. If you
need to include a quotation mark in the
string, type it twice.
print "OK, ""Bob""."

Operators:
+ string concatenation
- string subtraction (chop)
*, / replication, division
==, !=, >, >=, <, <= comparison
[i] get character i
[i:j] get slice from i up to j

Lists
Write a list in square brackets. Iterate
over the list with for, or pull out
individual items with a 0-based index in
square brackets. A negative index
counts from the end. Get a slice
(subset) of a list with two indices,
separated by a colon.
x = [2, 4, 6, 8]
x[0] // 2
x[-1] // 8
x[1:3] // [4, 6]
x[2]=5 // x now [2,4,5,8]

Operators:
+ list concatenation
*, / replication, division
[i] get/set element i
[i:j] get slice from i up to j

Maps
A map is a set of values associated with
unique keys. Create a map with curly
braces; get or set a single value with
square brackets. Keys and values may
be any type.
m = {1:"one", 2:"two"}
m[1] // "one"
m[2] = "dos"

Operators:
+ map concatenation
[k] get/set value with key k
.ident get/set value by identifier

Functions
Create a function with function(),
including parameters with optional
default values. Assign the result to a
variable. Invoke by using that variable.
Use @ to reference a function without
invoking.
triple = function(n=1)
 return n*3
end function
print triple // 3
print triple(5) // 15
f = @triple
print f(5) // also 15

Classes & Objects
MiniScript uses prototype-based
inheritance. A class or object is a map
with a special __isa entry that points to
the parent. This is set automatically
when you use the new operator.
Shape = {"sides":0}
Square = new Shape
Square.sides = 4
x = new Square
x.sides // 4

Functions invoked via dot syntax get a
self variable that refers to the object
they were invoked on.
Shape.degrees = function()
 return 180*(self.sides-2)
end function
x.degrees // 360

Intrinsic Functions
Numeric
abs(x) acos(x) asin(x)
atan(x) ceil(x) char(i)
cos(r) floor(x) log(x,b)
round(x,d) rnd rnd(seed)
pi sign(x) sin(r)
sqrt(x) str(x) tan(r)

String
.hasIndex(i) .indexOf(s)
.len .val .code
.remove(s) .lower .upper
.replace(a,b) .split(d)

List/Map
.hasIndex(i) .indexOf(x)
.indexes .values .join(s)
.len .sum .sort
.shuffle .remove(i)
.push(x) .pop .pull
range(from,to,step)

Other
print(s) time wait(sec)
locals globals yield

